

Page 1 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

New York Health Benefit Exchange

Detailed Design Review Summary for

9.3.2 Test Plan

October 9 & 10, 2012

Item Number Topic

9.3.2 Test Plan

http://www.csc.com/

Master Test Plan

September 18, 2012

New York State Health Exchange

(NY-HX)

CSC

Master Test Plan

Document Number: 528500-20120921000

Contract Deliverable Number: P-16

Contract Number: FAU# 1106211137

Release Number: 1.0

Date Submitted: September 18, 2012

New York State

Department of Health

http://www.csc.com/

Page 3 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Version History

Version
Number

Implemented

By

Revision

Date

Approved

By

Approval

Date

Description of
Change

1.0 Parampreet

Sidana

09/13/2012 S. Garner, C.

Adams

09/18/2012 Initial submission for delivery

1.1 Parampreet

Sidana

09/17/2012 Incorporated QA comments

from C. Adams

1.2 N. Graziade 09/25/2012 Incorporated data from excel

sheets

http://www.csc.com/

Page 4 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Table of Contents

1 INTRODUCTION ... 7

1.1 PURPOSE ... 7

1.2 TESTING APPROACH.. 7

2 OVERVIEW .. 8

2.1 PROJECT OVERVIEW ... 8

2.2 TESTING OVERVIEW.. 8

3 TESTING ASSUMPTIONS .. 9

4 TESTING CONSTRAINTS .. 10

5 TESTING RISKS ... 10

5.1 TESTING REQUIREMENTS DEFINITION ... 12

5.2 MAINTENANCE OF THIS DOCUMENT ... 13

6 CHANGE CONTROL PROCESS ... 13

7 TESTING OBJECTIVES .. 13

8 PRINCIPLES OF TESTING .. 13

9 TESTING METHODOLOGY ... 15

9.1 AGILE METHODOLOGY ... 15

9.2 AGILE SCRUM FRAMEWORK ... 16

9.3 NY-HX SOLUTION - AGILE APPROACH .. 17

9.4 THE AGILE-SCRUM TEAM ... 18

10 SCOPE OF TESTING .. 19

10.1 TEST PLANNING AND EXECUTION ... 20

10.2 TEST CORRECTION .. 22

10.3 TEST ACCEPTANCE ... 22

11 DEFECT TRACKING AND CORRECTION.. 23

11.1 MANAGING REPORTED DEFECTS .. 24

11.2 DEFECT LIFE CYCLE/ WORKFLOW .. 25

12 TESTING ROLES AND RESPONSIBILITIES ... 26

12.1 TESTING MANAGER .. 26

12.2 SENIOR TEST ENGINEER/LEAD AND TEST ENGINEERS .. 26

12.3 BUSINESS USERS/UAT TESTERS ... 27

12.4 DATABASE ANALYST .. 27

http://www.csc.com/

Page 5 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

12.5 PERFORMANCE ENGINEER... 28

13 TESTING ENVIRONMENT.. 28

13.1 TESTING ENVIRONMENT REQUIREMENTS.. 28

13.2 SOFTWARE .. 29

13.3 HARDWARE ... 29

13.4 OTHER RESOURCE REQUIREMENTS ... 30

13.5 TESTING TOOLS .. 30

14 DETAILED TEST STRATEGY ... 30

14.1 PURPOSE ... 30

14.2 OVERVIEW .. 30

14.3 ANALYSIS ... 30

14.4 PLANNING ... 31

14.5 EXECUTION AND VERIFICATION .. 33

14.6 MANAGE ... 35

15 APPENDIX A – COLLABORATION OF SDLC RATIONAL TOOLS 38

16 APPENDIX B – BUSINESS AND TECHNOLOGY REFERENCE MODEL 39

17 APPENDIX C – DETAILED TESTING PROCESS STEPS ... 40

17.1 REVIEW MASTER TEST PLAN .. 40

17.2 CREATE TEST PLAN .. 40

17.3 SETUP TEST ENVIRONMENT .. 40

17.4 EXECUTE TESTS .. 40

17.5 REVIEW TEST RESULTS ... 41

17.6 ACCEPTANCE SIGNOFF: ... 41

18 APPENDIX D – DOCUMENT MANAGEMENT ... 42

18.1 WAREHOUSING OF PROGRAM ELEMENTS .. 42

18.2 WAREHOUSING OF PROGRAM DOCUMENTATION .. 42

19 APPENDIX E – SAMPLES FROM AGILE TEST PLANS ... 43

http://www.csc.com/

Page 6 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

List of Figures & Tables

Figure 1: Testing Assumptions .. 9
Figure 2: Testing Risks .. 12
Figure 3: Agile Life Cycle Phases ... 15
Figure 4: Agile Scrum Framework .. 16

Figure 5: NY-HX Agile Approach .. 17
Figure 6: Scrum Team Structure During Sprints ... 18
Figure 7: Test Planning Documents ... 21
Figure 8: Test Acceptance Matrix.. 22
Figure 9: Defect Severity Level ... 23

Figure 10: Defect Turnaround Time .. 24
Figure 11: Defect Life Cycle/Workflow .. 25

Figure 12: Test Environment Software Requirements ... 29
Figure 13: Test Environment Hardware Requirements ... 29
Figure 14: Test Plan Release.. 36
Figure 15: Test Work Flow .. 37
Figure 16: Rational Tools Collaboration ... 38
Figure 17: Technology Reference Model .. 39
Figure 18: Agile Test Plan Template ... 43

Figure 19: PM Agile Sprint 6 Test (sample 1) ... 44
Figure 20: PM Agile Sprint 6 Test (sample 2) ... 45

Figure 21: PM Agile Sprint 6 (test against IE) .. 46

http://www.csc.com/

Page 7 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

1 INTRODUCTION

1.1 Purpose

The Patient Protection and Affordable Care Act of 2010 (hereafter simply the “Affordable Care Act”)

provides each state with the option to set up a state-operated health benefit Exchange, or to have a federally

operated Exchange that services one or more states. New York state is planning a state-operated Health

Exchange (NY-HX). The goal of NY-HX is to have an organized marketplace to help consumers and small

businesses buy health insurance and, where appropriate, apply for insurance affordability programs and/or

other public benefits such as Medicaid, CHIP, and other locally offered health programs. Further, New York

State wants to support consumers making choices that are right for them by providing an on-line system that

allows for understanding their eligibility and enrollment options, including easy comparison of available

individual and small group QHP options based on price, benefits and services, and quality. Consumers

seeking health care coverage will be able to go to the Health Exchanges to obtain comprehensive information

on coverage options currently available and make informed health insurance choices.

The purpose of this document is to define the testing strategy and approach to testing throughout the

development phases, and subsequent software releases for the New York State Health Insurance/Benefit

Exchange (NY-HX) Program. This plan also defines the work products, testing procedures, roles and

responsibilities, testing environments, as well as identifies assumptions, risks, and constraints for the testing

effort. The Master Test Plan document is intended to be utilized by program personnel for understanding and

carrying out all test activities, evaluating the quality of test activities and artifacts, and managing those

activities through successful completion.

1.2 Testing Approach

This plan will focus on an Agile-based testing methodology that will be adopted during the project

execution. The testing approach described herein builds upon CSC proven testing methodologies and

functions in harmony with the agile approach. The testing approach also incorporates industry best practices

when a definitive added value is identified to the overall strategy. Core values in the testing approach are as

follows:

 Testing early and often in an iterative manner that continuously incorporates business requirements.

 Focusing on a proactively approach of building quality software up front rather than reactively waiting to

respond to defects; thereby ensuring that quality is incorporated throughout the process.

 Utilizing thoughtful strategy rather than relying only on testing tools. Tools by themselves do not ensure

success. Emphasizing strategic aspects of testing ensures that analysis is consistently part of our testing

approach.

 Adapting the standard tools for the organization; thereby reducing risk and increasing efficiency.

 Adapting proven testing practices and methodologies that are technology-agnostic and can be utilized

with a broad array of testing tools.

http://www.csc.com/

Page 8 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

2 OVERVIEW

2.1 Project Overview

The U.S. Department of Health and Human Services (HHS) requires each state to have a Health Benefit

Exchange (HBE) in place by 2014. The major goal is to cover uninsured consumers, thus helping to create a

healthier community and reducing overall healthcare costs. New York State (NYS), is an Early Innovator

(EI) and national leader in developing an HBE serving as the key enabler for healthcare reform in United

States.

Each health exchange must determine eligibility for subsidies and programs, educate consumers, provide an

online storefront to evaluate, compare, and select health coverage, facilitate the enrollment process, and

provide assistance for purchasers to use in evaluating options and choosing coverage. States must ensure that

they are able to attract the participation of health plans to be competitive with the commercial market.

Meeting the requirement for a “no wrong door” system is critical to the success of the programs. The

interface with consumers must be intuitive, well-designed, and comprehensive. An effective interface will

attract consumers to the NY-HX Solution and make it easy for them to use it effectively.

The New York State Department of Health (NYS DOH) is focusing on this new venture to meet the

requirements of the Affordable Care Act (ACA). Moreover, as an early innovator, NYS DOH is likely to

develop an HBE that will serve as a model for other states and can interoperate smoothly and efficiently with

CMS, healthcare providers, and the HBEs developed by other states. The solution should be flexible and

scalable, enabling it to meet changing needs.

2.2 Testing Overview

The NY-HX program is a web-based application that supports the design, development and deployment of

the front-end architecture (application, hardware, software and infrastructure) for users’ web enabling with

the NY-HX solution. The architecture will include the following technical sub-systems: hCentive product,

UX Enroll 2014 user Interface, the SOAP UI web-services testing tool, I-log business rules engine, DB2

LUW, Java, and UX Enroll 2014 wireframes, Java Server Pages and Magnolia content management server.

Also included are the administrative functions, such as – Rational Quality Manager, Rational Requirement

Composer and Rational Team Concert.

Testing for the project will follow an Agile-based methodology, where progress will occur in an iterative and

incremental manner and be divided in to two-week cycles called sprints. In general within each sprint,

smoke, functional (includes web-services testing, database validation,) system-integration, regression testing,

retesting (general across all testing), and in some cases, User Acceptance Testing (UAT) may occur for

functionality developed either during that two-week cycle, or developed during previous sprints. An initial

deployment (Pilot) will be conducted in a staged manner for each release; in order to ensure the ease of

identifying sources of defect. Note that the terms defect, problem or bug, have the same meaning in this

document.

http://www.csc.com/

Page 9 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

3 TESTING ASSUMPTIONS
The Master Test Plan and Test Strategy is based on the following assumptions. The potential impact, if the

assumption does not hold true, is also listed. This table of assumptions will be updated as additional testing

assumptions are identified. The below mentioned list is not only limited to these points only:

Assumptions Impact

All Testing environments will be established and available when

needed to support the test phases and test types described in this

document. This includes facilities, equipment, connectivity, set-

up and ongoing support.

Scheduled testing may not be slipped and testing

may not be completed. Incomplete testing could

lead to production defects. Schedule delays could

occur. Testing quality could be diminished.

Business users from DOH will be available to perform activities

related to System-Integration, User Acceptance. And Initial

Deployment (Pilot) including Test Planning and Test Execution.

Testing activities will not be completed as

planned. Schedule delays could occur.

Resources from the project teams will be allocated to test efforts

as outlined in this document. Testing tasks will be given a high

priority and will supersede other activities during key test

phases as defined in the project plan.

Planned Testing tasks activities will not be

completed as per calendar. Testing quality will

suffer. Schedule delays could occur.

All issues and defects identified during the testing process will

be addressed in a timely manner during sprints by the assigned

team member.

Testing could remain Incomplete and the end of

testing phases and will lead to production defects.

Schedule delays could occur. Quality could be

diminished.

Scope will be effectively controlled during functional, system-

integration, UAT and Initial Deployment (Pilot).

Not adhering to defined project change control

procedures will allow “scope creep” to occur.

Web-enabled unit and string test cases for system-integration

testing will be utilized for positive flows

If unit or string test cases will not be used, it may

cause on missing some positive scenarios during

testing, which could cause production defects.

Testing activities will utilize new defect management, test

management, configuration management, requirements

management and traceability.

Insufficient requirements tracking, development

builds tracking, test execution tracking, defect

tracking will impact quality of work products.

Support for testing tools (Rational Quality Manager, Rational

Team Concert, Rational Requirement Composer) will be made

available

Lack of technical support or availability of

resource will delay the project.

All working scrum team members would be provided Laptops,

so that everyone can be mobile and can work in scrum team

rooms with all the team members for the respective tracks and

releases.

Lack of mobility would affect the team members

in working collaboratively in scrum rooms which

could lead to confusion and delay in the project.

All testing activities will take place at the East Greenbush, NY

CSC facility

An additional location (identification, setup) will

delay project.

Figure 1: Testing Assumptions

http://www.csc.com/

Page 10 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

4 TESTING CONSTRAINTS

The Integration, Initial Deployment (Pilot) and General Availability Testing efforts will be conducted given

the following constraints:

1. Dependency on Other Teams. Successful testing is dependent on test cases being complete and

available from the various development efforts (Use cases, Unit, String and Integration testing) to drive

Test Planning and Execution activities.

2. Time. The NY - HX Program must meet the implementation time frame. The overall Planning and

Execution efforts must be efficient and effective. The Conceptual Architecture and Design work of the

NY-HX Program must be completed before the planning and development date of each release.

3. Resources. There are limited resources on the testing teams that will need support for their testing

efforts from all other teams.

4. Scope. The scope of effort for the overall project drives Test Planning and Execution efforts. Scope

changes must be closely managed as Test Planning and Execution progresses in controlled manner.

5. Environment. A technology refresh may limit the depth of required modifications to the data

architecture and usability.

5 TESTING RISKS

Risks associated with testing will be addressed in this section of this Test Plan. For more detail on risk within

the project, please refer to the Risk Management Plan. Risks associated with the testing and planning have

been identified. This list is not intended to be all-inclusive since the testing team cannot always anticipate

every risk at the start. The risks that are identified here are those that are foreseen at this time. This list is the

starting point for the test team’s risk management activities.

Critical testing risks that must be managed, tracked, and mitigated will be formally documented and

reviewed. Each risk identified will be assessed in terms of the impact it could potentially have on the success

of the project and a mitigation strategy will be identified which is commensurate with this potential impact.

For detailed scope and change management process, please refer 9.4.2 - Risk Register

http://www.csc.com/

Page 11 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Risk Potential Effect on Project Success Risk Mitigation Strategy

Time frame for

implementation is tightly

time boxed.

Insufficient Unit and String testing

performed by development teams.

Delays in receiving components from

development teams needed for Functional

and System-Integration Testing during

sprints.

Use strategy to prioritize and plan project

efforts. Testing Team to oversee the use of

appropriate standards and processes.

Publish and adhere to Unit and String Test

Procedures.

Close coordination between the product

owner, business/policy analyst, application

architect, development teams and the

testing team

Scope is not effectively

controlled during Integration,

Initial Deployment (Pilot)

and General Availability

Testing.

Scope creep. Schedule delays. Adhere to defined project change control

procedures. Involve project manager,

requirements team, development team,

architect team and testing team in

determining whether a discrepancy is a

defect or a change in scope or requirement

change.

Lack of technical resources

and tools to maintain

technical environment.

Delays/interruptions in testing Make technical resources and tools

available to testing whenever needed.

Failure to allocate sufficient

resources

Tools and resources vital to the testing

process and other dependant areas will not be

employed

Properly plan resource requirements and

gain commitment to execute desired

resource plan

More defects identified

during the test than expected.

Fixing and regression testing takes longer

than anticipated

Try to find majority of the problems as

early as possible during Testing, allowing

adequate time for resolution.

Fixes are not quickly turned

around with high quality

Fixing and regression testing takes longer

than anticipated

Let most experienced resources to work on

critical fixes. Do not cut corners in unit

testing fixes to minimize impact on

Testing.

Allow sufficient travel budget to bring

JAVA expertise on board.

Test environment does not

mirror production

Test results are not representative of

production results.

Always test in an environment that mirrors

production, and maintain the stability of

the test environment

Extensive testing effort

required

Additional testing will impact resources,

schedule and budget.

Need to have exclusive requirements sets

for each sprint, so that focused and

exclusive testing can be done to deliver

quality.

Delay in code delivery Delay in code delivery on first day of each

sprint would delay testing and release

Verified code should be dropped into

testing environment on first day of each

sprint after unit testing is completed.

Proper build plan should be published and

followed.

http://www.csc.com/

Page 12 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Risk Potential Effect on Project Success Risk Mitigation Strategy

DOH business users and

product owners non-

availability

Non- availability or non allocation of

business users and product owners will affect

overall NY-HX programs testing tasks such

as Functional, System- Integration, User

acceptance and Initial Deployment (Pilot)

testing.

DOH has been requested to provide experts

that are dedicated to NY-HX program and

available all the time throughout the

project

Data test bed is not

controlled or non

availability of test data

Lack of data refreshes or sufficient data

rollback procedures or non availability of

test data will delay testing

Ensure that data refreshes are well

defined and executed timely. Also,

verified test data is available well

before test execution

Uncertainty surrounding

changing the appearance

and navigation of UX

Enroll 2014 design.

Users unfamiliar with expected changes

may impact development, designing and

testing results.

Evaluate the changes prior accepting

and implementing them. Include users

on user design team.

Test the usability design by including

users in Interaction Design Mockups.

Acceptance of the User

Experience work products

required.

Changes to the screens after development has

started will require re-work.

Decision on UX Enroll 2014 design should

be taken up front prior to development and

test preparation.

Figure 2: Testing Risks

5.1 Testing Requirements Definition

Testing is defined as the verification that something will perform as expected before it is implemented in

production. To ensure that testing is successful for NY-HX, we must ensure the following:

 Testing strategies and plans are developed with clarity and rigor. It is critical that testing strategies and

plans are comprehensive, well documented, and clearly understood by all persons involved in the testing

effort and those responsible for approval of testing activities. This measure is ensured by a collaborative,

communicative approach to standardizing testing strategies.

 The testing environment(s) are stable for testing. The environment(s) must be set up in such a way that

testing and re-testing can be done efficiently with little or no downtime. This measure is ensured by a

rigorous examination of the testing environment to be performed frequently and thoroughly.

 The testing effort is well managed. The scope of the testing effort must be properly defined,

communicated, and controlled. The activities and tasks will be tracked and managed to ensure dates are

met without compromising the quality of the tests. This measure is ensured by utilizing Rational Quality

Manager, and core business practices which emphasize frequent checks and balances.

 Communication relating to the testing effort will need to be correct, consistent, and timely. To be

efficient, the test team will need to be well informed and well coordinated. This measure will be ensured

by regular status meetings within the testing team and across tracks.

 Detailed test plans (including number of cycles, test cases and timing) for each type of test will be

developed at the appropriate times for each release. This measure will be ensured by keeping the test

plans in sync with the builds and testing proactively and often.

http://www.csc.com/

Page 13 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

5.2 Maintenance of This Document

All subsequent updates of the Master Test plan will be made and identified by revision, and only by mutual

agreement between the NY-HX Program Manager, CSC Project Management, QA Manager, Development

Manager, PMO and the Testing Manager. This document will be reviewed and updated on need basis and

will be maintained on SharePoint.

6 CHANGE CONTROL PROCESS

Any defects, issues or requirements that are deemed changes and result in building new functionality outside

the scope of baseline specifications will be incorporated into a change management process. The CSC Scope

Change Review Board (SCRB) will review requests to determine whether they constitute a scope change,

and/or require further review and approval by the joint DOH and CSC Scope Control Board (SCB).and

Requests will be reviewed for basic understanding, impact to the current development activities, any

associated risks, and will follow the scope management process documented in the NY-HX Scope and

Change Control Management Plan.

For detailed scope and change management process please refer 9.4.4 NY-HX Scope and Change

Control Management Plan v1.2.

7 TESTING OBJECTIVES

The general objective for testing the NY-HX program is to validate and verify any web-based portal screens

supported by existing business processes and rules. Specific testing tasks to achieve this objective are stated

below:

1. Define a Testing Approach that will be used by NY-HX project teams.

2. Develop Test Plans that provide the appropriate test coverage for the NY-HX project, and ensure the

release is sufficiently tested prior to production.

3. Identify the test environments that will be needed to sufficiently test the web application for the NY-HX

program.

4. Prepare/identify and execute Test Cases in accordance with the approved Test Plans. Document actual

test results as part of the test execution activities. Obtain approval for each test that is executed

successfully.

5. Identify the migration process that will be used to move the application components from one test

environment to the next.

6. Identify the process(es) that will be used to document, track, report and manage issues that are identified

during the testing activities.

7. Establish a repository of NY-HX test cases to be used as a benchmark for future releases.

8. Achieve an acceptable level of risk that balances cost of testing against the cost and likelihood of

potential failures.

8 PRINCIPLES OF TESTING

The high level principles that will be employed on the NY-HX project, are listed below.

 Testing can never guarantee error-free software
It is neither physically nor economically reasonable to develop and execute an exhaustive collection of tests

for each possible input condition to a component, and an exhaustive analysis of every path through the code

of each component. Rather than trying to identify all errors in an effort to produce perfect software, the

emphasis should be on identifying enough defects to produce software that is “good enough.”

 Use as good test cases as possible

http://www.csc.com/

Page 14 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

The novice’s approach is often an automatic reaction to the code, using either far too many or too few test

cases. Usually these tests attempt to verify that the software does what the requirements say it should. They

do not test whether it does what it should not. Cultivate a testing organization that understands what types of

testing are necessary in which conditions and how to develop effective test cases/scenarios. The test strategy

has been defined to find as many defects as possible with as good test cases as possible.

 Developers must fix defects as soon as they are reported and before continuing with their

current tasks
Waiting to fix bugs allows several problems to occur. The developer has time to forget the details of the

problem code, increasing the time required to correct it. A developer may introduce the same defect

repeatedly into the project by reusing the same incorrect approach. As a result, the project can slip n hours
(where n is impossible to predict as it represents the time required to make these corrections). But

management still feels that the project is on track because the developers continue to report their modules as

complete. Inevitably, this leads to surprises for the management team and client when they cannot pilot or

deploy the system at the end of the scheduled development period, but must instead fix all of these

accumulated defects.

 Developers should not be the only ones to test their own work

There are at least two reasons to employ a group of minds who are separate from the developers:

o It is psychologically difficult to proofread your own work and find all of the errors.

o They may or may not have a correct or complete understanding of the requirements for

which the code is written.

So, application must be tested with the collaborative efforts of all the teams and individuals included in

scrum team in agile environment.

http://www.csc.com/

Page 15 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

9 TESTING METHODOLOGY

NY- HX project has chosen a vigorous SDLC method which is referred as Agile methodology. It has

continuous design, development, testing and client feedback approach build the NY- HX program.

9.1 Agile Methodology

Agile Methodology is based on iterative and incremental development, where requirements and

solutions evolve through collaboration between self organized cross functional teams. It promotes

adaptive planning, evolutionary development and delivery, a time-boxed iterative approach, and

encourages rapid and flexible response to change.

Most software development life cycle methodologies are either iterative or follow a sequential

model (as the waterfall model does). As software development becomes more complex, these

models cannot efficiently adapt to the continuous and numerous changes that occur. Agile

methodology is developed to respond to the changes quickly and smoothly. Agile methodology is a

collection of values, principles, and practices that incorporates iterative development, test, and

feedback into a new style of development. The below picture shows the phases of Agile approach

(referred from Agile Scrum approach):

Figure 3: Agile Life Cycle Phases

http://www.csc.com/

Page 16 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

9.2 Agile Scrum Framework

Scrum is an agile framework for software development. So instead of providing complete, detailed

descriptions of how everything is to be done on the project, much is left up to the software

development team. This is done because the team will know best how to solve the problem they are

presented. This is why, for example, a sprint planning meeting is described in terms of the desired

outcome (a commitment to a set of features/functions to be developed in the next sprint) and

somewhat a set of Entry criteria, Task definitions, Validation criteria, and Exit criteria (ETVX).

Scrum framework is simple "inspect and adapt" framework that has majorly three roles, three

ceremonies, and three artifacts designed to deliver working software in Sprints, usually 15 to 30

days iterations.

 Roles: Product Owner, Scrum Master, Scrum Team;

 Ceremonies: Sprint Planning, Sprint Review, and Daily Scrum Meeting;

 Artifacts: Product Inventory, Sprint Inventory, and Burn-up/down Chart

The below picture shows the Agile – Scrum framework at high level:

Figure 4: Agile Scrum Framework

http://www.csc.com/

Page 17 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

9.3 NY-HX Solution - Agile Approach

 Project - For an Agile development project to be successful, it must operate in a project context that

maintains its adaptive nature. NY-HX overall program comes at project level which consists of multiple

tracks, releases and sprints.

 Track - Agile development also focuses on establishing and maintaining the direction of Tracks of work

comprised of multiple Releases. The NY-HX project Tracks are comprised of major sets of business

functionality and will result in operational readiness review deliverables for each specific track. NY-HX

program is initially scheduled and divided in five tracks, which are:

a) Eligibility & Enrollment 1 (Individual)

b) Eligibility & Enrollment 2 (SHOP)

c) Plan Management (PM)

d) Financial Management (FM)

e) Communication and Consumer Assistance (CA)

f) Post Prod Data Aggregation

 Release - The Agile development approach focuses on the execution of Releases comprised of

multiple Sprints and a definitive set of functionality. Each release will result in completed

requirements and design deliverables, as well as the completed test results for that particular set

of functionality. Each release has 11 sprints from sprint 0 (planning), sprint 1 to 8 for

development, designing and testing. And sprint 9 and 10 for testing, defect fixing and

closing/reporting of release.

 Sprint - The core of the Agile development approach are Sprints that enable small teams to pull

a batches of work from requirements through to a deployable product increment within a time

box. Each sprint is defined for 2 weeks each.

Figure 5: NY-HX Agile Approach

Sprint

Track

Project

Release

http://www.csc.com/

Page 18 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

9.4 The Agile-Scrum Team
Scrum relies on self-organizing, cross-functional team. The Scrum team is self-organizing in that there is no

overall team leader who decides which person will do which task or how a problem will be solved. Those are

issues that are decided by the team as a whole. The scrum team is cross-functional so that everyone

necessary to take a feature from idea to implementation is involved.

These agile development teams are supported by two specific individuals: a Scrum Master and a Product

Owner. The Scrum Master can be thought of as a coach for the team, helping team members use the Scrum

framework to perform at their highest level. The product owner represents the business, customers or users

and guides the team toward building the right product.

Projects using the scrum framework make progress in a series of sprints, which are time boxed iterations no

more than a month long. At the start of a sprint, team members commit to delivering some number of

features that were listed on the project's scrum product inventory. At the end of the sprint, these features are

done--they are coded, tested, and integrated into the evolving product or system. At the end of the sprint a

sprint-review is conducted during which the team demonstrates the new functionality to the product owner

and other interested stakeholders who provide feedback that could influence the next sprint.

Scrum Teams may include: Product Owners, Business Analysts, a Scrum Master, Policy Analysts,

Technical Designers, Developers, Testers, Tech Writers, Database Analysts, Technical Architects, Quality

Analysts, Business Users and Subject Matter Experts.

Figure 6: Scrum Team Structure During Sprints

http://www.csc.com/

Page 19 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

10 SCOPE OF TESTING

The scope of testing for each release in the NY-HX program comprises the following types of testing:

1. Unit Testing (as part of the development work) - tests a logical unit/component of work (LUW) such as

a component, data access object (DAO) or a screen (GUI).

2. String/Component Integration Testing (as part of the development work) - tests the integration of

logical groups of unit tests. All testing at this level is within the teams responsible for creating the units

or strings.

3. Smoke Testing – tests the basic health check (as navigation, login, basic high level functionality, DB

connectivity etc) of the builds, so that functional or system-integration testing can begin.

4. Functional testing – tests the individual piece of the functionality mapped to each granular level of

requirements or tasks, which are defined for each user story. It includes middle layer (web services) and

database testing during sprints. Web services testing is done to test the service calls, which carries the

data to and fro through the databases to front end (presentation and application UI layer). Database

testing includes the testing of the data structure (tables, columns-rows and fields), data validation and

verification within the database.

5. System-Integration Testing – tests system level integrated functionality, including navigational flow,

data, and business functionality by testing multiple components strung together as over all integrated

system. These tests are intended to flush out errors in interfaces between components and will include

limited external links. System Integration Testing also confirms that the system as a whole meets its

requirements, and tests the integration of individual work products across all project teams, modules, and

interfaces. It also includes the web-services testing and database testing.

6. Regression Testing – tests application functionality on previously tested portions of the system after

changes have been made.

7. Retesting – tests all the bug fixes for the reported defects, and whether the fixes satisfy the requirements.

Retesting occurs continuously and is an integral part component of testing across all teams.

8. Performance Testing (Non-Functional)– tests general throughput and response times for the

application in a full-volume environment with max number of users. (performed by

performance/architecture team)

9. User Acceptance Testing (performed by business users) – system is made generally available to a

designated number of business users to verify functionality and check if all the requirements have met.

10. Initial Deployment (Pilot) – system users or their designated representatives confirm that the

components have been built or configured according to the defined specifications. In other words, the

users verify that the system can be used to help them run their business. Training activities will also

begin in this phase.

A key aspect of the test plan is that each testing phase leverages the work that was performed during prior

stages. This incremental approach facilitates early identification and removal of major defects while they are

relatively less difficult to find and correct. It also helps to establish a progressive level of confidence in the

project’s functional adequacy and stability as the various components are developed and deployed.

Another key aspect of the test plan is that it incorporates a holistic approach in order to satisfy the overall

business objectives. Within each release, testing will be performed to address standalone component and

interoperability tests for all screens.

The following sub-sections define the scope and types of testing that will be performed.

http://www.csc.com/

Page 20 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

10.1 Test Planning and Execution

Test Planning will be conducted during sprint 0 and prior to each sprint as well. During Test Planning, test

conditions, test data, test cases and expected results will be documented. Planning for User Acceptance

Testing (UAT) and Initial Deployment (Pilot) Testing also includes defining acceptance criteria, which are

the rules used to determine when the work has been successfully completed.

For Test Planning, the following table documents the roles primarily involved in planning, the major

activities, and the work products for each type of test.

Test Type Responsibility Major Activities Work Products

Unit Developer Construct unit test cases

 Identify data requirements

 Conduct unit testing of module

 Unit test cases with expected

and actual results

String/

Component
Developer Construct string test cases

 Identify data requirements

 Conduct string testing of modules

 String test cases with expected

and actual results

Smoke and

Functional
Business Users(s)

Testing Engineer

External Entity Rep

 Identify test cases

 Identify/validate data requirements

 Determine timing of test cases

 Execute test cases

 Smoke test cases and actual

results for basic health check

of builds during beginning of

sprints

 Functional test cases for each

functionality/tasks derived

from user stories and actual

results

 Business User/Product owner

sign off

System -

Integration

Business User(s)

Testing Engineer

Developer/Fixer

External Entity Rep

 Identify test cases

 Identify/validate data requirements

 Determine timing of test cases

 Execute test cases

 Over all system-integration

test cases

 System-Integration test cases

with expected and actual

results

 Business User/Product owner

sign off

Regression Testing Engineer

Configuration Manager

 Compare results before and after a

module or configuration change
 Result comparisons

 Testing Lead/Manager Sign

off

Performance/

Volume
Performance Engineer Develop Performance/Volume Test

Plan

 Execute Performance/Volume Test

 Performance/Volume Test

Plan

 Performance/Volume Test

results

 Performance Mgr. Sign-Off

http://www.csc.com/

Page 21 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Test Type Responsibility Major Activities Work Products

User

Acceptance

Testing

Business User(s)

Testing Engineer

Developer/Fixer

External Entity Rep

 Identify acceptance test cases

 Identify/validate data requirements

 Determine timing of test cases

 Execute test cases

 UAT results

 Business User/Product owner

sign off

Initial

Deployment

(Pilot)

Business User(s)

Testing Engineer

Developer/Fixer

External Entity Rep

 Identify test scenarios

 Identify/validate data requirements

 Determine timing of test cases

 Execute test cases

 Initial Deployment (Pilot)

results

 Business User/Product owner

sign off

Figure 7: Test Planning Documents

Test cases are created for a majority of ‘logical units of work (LUW)’. LUW is a unit of work that has a

distinct starting point (an event triggering the process) and a distinct end point (result from the process). In

Agile process, each defined task from user stories may have n number of test cases for verification and

validation. The business use cases developed during business design can be a starting point for validating

existing test cases. For each case, acceptance criteria, usually in the form of expected results, are also

defined. For System-Integration, User acceptance and Initial Deployment (Pilot) tests, business users should

approve these expected results as noted above.

Execution, regardless of the test type, and testing proceeds according to a general process as follows (See the

Appendices at the end of this document for detailed process steps):

1. Utilize Test Cases/Scripts and associated Test Plans from the business scenarios.

2. Prepare the Testing Environment.

3. Prepare/review detailed Test Data.

4. Run tests according to the test plan, creating Test Logs.

5. Analyze the test results in detail. Investigate in detail any discrepancies noted, creating and

 log defects with details.

6. Analyze defects and resolve, as needed, by working with the application architect, the

 development team, and the test team.

7. Retest, as needed, once the defect is fixed and changes are completed.

8. If defect is not fixed, defect is reopened and assigned back to relative team member

9. Perform regression testing.

10. Obtain sign-off (where applicable).

http://www.csc.com/

Page 22 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

10.2 Test Correction

All defects (including modules, functionality, technical components etc.) encountered during the Functional,

System-Integration and Initial Deployment (Pilot) testing phases and will go through the defined Defect

Tracking and Correction procedures. Any defects whose severity impacts the ability to continue testing will

be raised to the scrum team/project management team and addressed as a critical issue. A decision will be

made in a timely manner to determine the next steps so that the testing effort can move forward.

10.3 Test Acceptance

As the Test Planning and Test Execution efforts for each type of test are completed, key project personnel

and/or business users will review and approve the work products. Sign-off indicates that the work products

are accepted, and may include any concerns, issues, or modifications deemed necessary for acceptance.

Sign-offs on test execution work products also indicate that the acceptance criteria have been satisfied.

The Test Acceptance matrix below identifies when each of the Test Planning and Test Execution work

products is estimated to be approved.

Phase Test Type Sprint Planning Sign-off Sprint Execution Sign-off

Unit Testing Component Tests No signoff necessary No signoff necessary

String Testing Component

Assembly Tests
No signoff necessary No signoff necessary

Functional Testing

(during sprints)
Sprint Review After Every Sprint 0 and 1 After every Sprint 2 to 10

System Integration

Testing
System Integration

Review
As per release (Gantt) chart As per release (Gantt) chart

User Acceptance

Testing
User Review As per release (Gantt) chart As per release (Gantt) chart

Regression Confidence Review No signoff necessary No signoff necessary

Performance/

Volume
Performance/

Volume Review
As per release (Gantt) chart As per release (Gantt) chart

Initial Deployment

(Pilot)
Pilot Review As per release (Gantt) chart As per release (Gantt) chart

Figure 8: Test Acceptance Matrix

The System-Integration, Performance/Volume, User Acceptance and Initial Deployment (Pilot) tests results

require formal review.

If the results of any testing effort be deemed unacceptable, detailed documentation should be developed and

presented to the Testing Lead explaining the test results and why they are unacceptable. A joint decision will

be made regarding the next steps for resolving the issue.

http://www.csc.com/

Page 23 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

11 DEFECT TRACKING AND CORRECTION

Identifying defects within business processes and application functionality is one of the primary reasons for

Functional (during sprints), System-Integration, User Acceptance and Initial Deployment (Pilot) Testing.

Defect Tracking and Correction procedures will be used to prioritize, categorize, assign, and correct defects

found during testing.

In all levels of testing it is important to distinguish between defects and changes. Simply defined:

 A defect occurs when a project component’s (module or technical infrastructure) behavior departs

from that prescribed in baseline specifications.

 A change occurs when a project component behaves according to the baseline specification but

something else is wanted. This is true even if the specification is obviously wrong.

Defects are fixed as a normal part of testing. However, changes must be submitted as a change of scope,

following the project’s change control procedures. If the change is approved, it will be added to the system.

Differentiating between defects and changes helps prevent new functions from being introduced during

testing. This helps keep testing on schedule and within budget.

For NY-HX project IBM Rational requirements management, test management and defect tracking tools will

be utilized to track test case execution, defects and changes identified during the Functional, System-

Integration, User Acceptance and Initial Deployment (Pilot) testing phases.

To avoid misunderstandings within the project team or between the project team and the business users, it is

critical that everyone knows how to identify the severity of defects, and how severity levels affect delivery of

the system. The current NY-HX project Defect Tracking system uses the following severity codes:

Defect Severity Level Definition

1-Critical Defect that results in a system crash or critical business function failure,

without an acceptable alternative workaround

 Prevents the system from meeting business requirements

 Affects functionality, tester workaround is not available
 Testing cannot continue at pace. Very slow performance during testing

2-High Some loss in functionality in a component of the application, while

application as a whole is still functional.

 Prevents the system from meeting business requirements and alternative

workaround is very cumbersome and/or time consuming

 Has a High impact on the project

 Needs to be corrected for sign-off
 Jeopardizes data integrity

3-Medium Impact can be corrected at a routine schedule release

 Contained within the user interface

 Affects functionality, however a tester workaround is available

 Problem or error has an operational impact but a workaround exists and

testing can proceed
4-Low Indicates that the problem is a low priority and can be fixed at any time

 Does not affect system performance

 Does not affect functional or non functional requirements

 Usually a cosmetic issue or has a minor operational impact
 Testing can proceed without interruption

Figure 9: Defect Severity Level

http://www.csc.com/

Page 24 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

These codes are aligned with the best practices that use the following definitions for each of the severity

levels:

 Critical (1) – When software results in a system crash, database crash or critical business function

failed and there is no acceptable workaround available for the problem. Critical defects are blockers

and must be fixed / corrected immediately, so that testing can be resumed.

 High (2) - When software logic or layout does not meet specifications (for example, it does not

contain required fields) and there is very cumbersome workaround available for the problem. High

defects must be corrected before the code is going to be freeze for final release.

 Medium (3) - When software logic does not meet specifications, but a workaround is available. For

example, if you click the button, the code does not work, but if you choose the command from the

menu, it works fine. This severity level may also be used for failure to comply with user interface

standards or inappropriate scheduling of batch jobs. These defects do not significantly impact the

execution or performance of the software and need not necessarily be corrected before the code is

released to production. However, for the NY-HX project these defects should also be corrected

before code is released to production.

 Low (4) - For cosmetic details. Low-level defects do not need to be corrected before release to

production.

The UAT and Initial Deployment (Pilot) fixers will strive to fix all the possible defects (including low)

before the system is moved to production. Critical and High defects will receive the highest priority.

However, the presence of low severity defects will not prevent the system from being implemented in

production.

Defect Turnaround Time should be abide by the development teams to fix the defects, so that all the possible

fixes can be retested and the best quality product can be deliver within the given fixed timeframe. Defect

Turnaround Time to fix the defect, is defined in below table:

Defect Severity Level Defect Turnaround Time

1-Critical Max 24 hours

2-High Within the Sprint

3-Medium Within the Release

4-Low Within the Release/Track

Figure 10: Defect Turnaround Time

11.1 Managing Reported Defects

11.1.1 Classifying Defects

In light of the scale of the NY-HX project, it has been determined valuable to establish a scheme for

classifying and organizing defects when they are reported. Defects will be classified where defects are

located through the use of system geography such as batch vs. online, subsystem name, window name, or

interface name.

11.1.2 Recording Defects

When defects are found, it is important to record them in Defect tracking tool, so that they can be tracked,

retested and closed accordingly. This record may include the following items depending upon defect tracking

tool’s configuration as: defect ID number, a descriptive headline (summry), the release/version/build number

of the application when the defect is found, date found, severity level, tester’s name, affected components,

classification data, and a description of the defect. Supporting evidence of the defect may be in the form of a

screen snapshot or a copy of an event log.

http://www.csc.com/

Page 25 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

11.1.3 Resolving Defects
Once reported, defects must be assigned to a developer, tracked, fixed, and finally promoted to a clean build.

The development, architecture, design and database teams must follow defect turnaround time protocols, so

that fixes can be retested as early as possible. Whenever possible, the original developer of the code should

make all corrections. As corrections are made, the release, version, build and branch containing the corrected

code, the code module version, and resolution must all be recorded. A record of defect corrections will be

kept to provide a solution set for future fixes. Successful fixes will be re-implemented.

11.1.4 Tracking Software Quality

The Test Team will report on progress on a daily/weekly basis. Reporting will include:

 Defect counts – by priority, subsystem, test type

 Disapproved, Completed (Pass/Fail) Test Cases/Problem Logs - by test type, priority

 Testing progress - # test cases identified, created, executed

 Additional metrics as requested

11.2 Defect Life Cycle/ Workflow
Defects will be logged during verification and validation of the test cases through Rational Quality Manager

(RQM); and defects are stored as work items in Rational Team Concert (RTC) tool. The customizations of

the statuses, fields and so on are performed in RTC. To manage the defects, the defect life cycle will be

followed according to a defined collaboration within the RQM and RTC tools. The defect life cycle allows

and enables test management to follow the defects/issues until their closure. The value of handling defects

according to the defect life cycle will be emphasized within and across all teams. They will be providing or

selecting appropriate values such as summary, description, steps to reproduce, attachments, severity, priority,

dates to be fixed / delivered and so on. The defect work flow will also help team members, Scrum Masters

Product Owners, and project management to handle and control the quality of the NY-HX project.

Figure 11: Defect Life Cycle/Workflow

http://www.csc.com/

Page 26 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

12 TESTING ROLES AND RESPONSIBILITIES

The following is a breakdown of responsibilities by role for the testing activities associated with the NY-HX

program. More than one person may fill a role or a person may fulfill more than one role.

12.1 Testing Manager

The Testing Manager will provide overall coordination for the testing activities for a release during; the

unit/string testing being conducted by the dev teams during the development phase and functional, system-

integration conducted by testing team and UAT testing conducted by business user. Responsibilities include:

 Providing overall leadership and direction for testing efforts across the entire program

 Developing an overall master test plan, test strategy and test approach

 Providing standard templates for work products

 Identifying and notifying appropriate project management of test team requirements for staffing,

space, hardware, supplies, etc.

 Directing and maintaining testing project plans and oversee testing effort

 Managing a tightly controlled testing environment by working with the Technical Support Team

 Monitoring testing activities and compiling testing statistics and work on Issue resolution

 Managing testing discrepancies and making sure they come to closure in a timely manner

 Escalating high priority defects, issues, or changes, bringing them to closure on a priority basis

 Keeping project management informed of testing status on a regular basis

 Monitoring and providing quality assurance reviews for all testing work products

 Ensuring the formal defined QA/testing standards and processes are being followed

 Guiding testing team members in logging issues and following Defect life cycle

 Meeting with all QA/testing teams after their individual scrum meetings and understand the

issues/blocker and work on resolution and JAD sessions

 Documenting and monitoring test issues and track to closure

 Reporting issues and blocker items to appropriate teams and managers

 Coordinating test planning, execution activities, and results reviews for the various test types (e.g.

Functional, System-Integration, Initial Deployment (Pilot), and UAT)

12.2 Senior Test Engineer/Lead and Test Engineers

A Sr. Test Engineer/Lead and Test Engineer is responsible for the development and documentation of test

cases/scripts/procedure-steps and scenarios, execution of tests and logging of results to ensure all the

acceptance criteria is satisfied. The Engineer will utilize automated test tools (if available) and appropriate

manual templates, processes and procedures. Specific responsibilities include:

 Working with the Sr. Testing Engineer/Lead to coordinate test planning and execution activities for

all test types and Ensure testing is conducted per the test plan

 Assisting the Sr. Testing Engineer/Lead in defining and managing testing environments and working

with technical support personnel responsible for environment maintenance and support

 Identifying testable, non testable, front end, middle layer, database requirements for testing

 Identify requirements and work closely with Business Analyst and development engineers to

understand the requirements, behavior of the system and accordingly write the test plan, test cases to

complete test coverage

 Determine and acquire needed test data, test environment and support

 Create RTM and ensure and update the Test tracking tool (RQM and Excel)

 Recognize Issues/Problems/defects ahead of time and Issues tracking tool (RQM and Excel) and

escalating high priority defects or changes

 Develop test results, defect results and test summary reports

http://www.csc.com/

Page 27 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

 Perform different types of testing like smoke, functional, system- integration, Regression, defects

retesting and support business users during user acceptance testing

 Identifying ,addressing and assigning severity and priority for defects and changes

 Reviewing testing results and work products for completion and Obtaining final sign-off for tests as

required

 Identifying and resolving priority conflicts between pre-implementation tasks and testing tasks

 Act as the “go to” resource for manual and automated scenario and case/script development and in

the use of the automated tools for key users and business resources involved in test planning and

execution

 Designing and maintaining the technical and functional structure of the automated testing tools (if

applicable) and Maintaining library of scenarios and cases/scripts (manual or automated)

 Executing tests and compiling test results and statistics

 Communicating testing discrepancies and facilitating closure in a timely manner

 Conducting and attending life-cycle peer reviews, Test Readiness Reviews (TRR) and daily Scrum

meetings and JAD sessions

12.3 Business Users/UAT Testers

The Business Users are business’ Subject Matter Experts (SME's) from the user community. These

individuals are responsible for System-Integration, User Acceptance and Initial Deployment (Pilot) test

planning and execution of tests. It is anticipated that for some business users/UAT testers, their role during

test execution is at times, similar to that of the Sr. Testing Engineer. Some testing responsibilities include but

not limited to:

 Performing assigned test planning and execution activities

 Creating business test cases/scenarios and defining acceptance criteria with expected results

 Developing (ad hoc) test plans and work products

 Ensuring the test plans include the appropriate types of tests and level of detail

 Executing business test cases to meet the defined acceptance criteria andand expected results

 Executing (ad hoc) test scenarios and cases/scripts as planned

 Identifying and logging defects, issues, changes in scope/design, and enhancements

 Facilitating the resolution of defects, issues, changes, and other discrepancies, as assigned

 Participating in testing review sessions

 Approving and signing off on test cases/scenarios and testing results produced during the functional,

system-integration, UAT and initial development (pilot) testing effort

12.4 Database Analyst

The Database Analyst supports the testing process by providing direction on data structures, relationships,

data placements, system interfaces and database technology. Few testing responsibilities include:

 Assisting with test execution

 Assisting with issue resolution

 Working with the Configuration Manager on back-up and restore procedures used to support all

types of testing

 Preparing the testing database(s) for test execution (overall environment and automated tools)

 Tracking data used from back-up to back-up

 Coordinating back-ups and restores with the Technical Infrastructure Team

 Developing queries needed for test execution validation and verification

http://www.csc.com/

Page 28 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

12.5 Performance Engineer

The Performance Engineer is responsible for ensuring the web-site performs under load and assists with

technical tests that verify the various technical components. Specific testing responsibilities include:

 Performing load tests as necessary

 Performing network connectivity tests

 Performing crash testing activities

 Assisting in development and testing activities as required

 Assisting with software deployment as necessary

13 TESTING ENVIRONMENT

13.1 Testing Environment Requirements

The environments used to support Unit, String, Integration, Performance/Volume and Initial Deployment

(Pilot) testing activities are described below. The environments should be available and verified prior to

testing the start of testing activities.

 Development – Used for Unit and String Testing work performed by the Development Teams. This

will consist of physical environment and data environments for unit and string testing. This may be

done at local machines of development teams.

 Functional Testing – Used for functional testing during sprints. The testing team uses this

environment to perform functional testing to verify defined tasks from user stories during sprints.

 System-Integration Testing – Used for System-Integration testing. The test team to perform

system-integration testing to assess potential functionality or system defects against a full size

database will use this environment. This environment will have the continuous Integration of the

builds which are tested, verified and passed during functional testing.

 Performance Testing – Used for Performance/Stress/Volume Testing. Performance team will be

performing performance/stress testing to uncover potential performance issues for whole application

with a certain number of users and data. It is expected that this environment will have adequate

space to support full volume databases.

 User Acceptance Testing – Used for business users’ acceptance testing. This environment will be

used for acceptance criteria validation and final approvals and sign off for pilot testing.

 Pilot Testing (Staging) – Used for the Initial Deployment (Pilot) testing. This environment will also

be used for user training, final acceptance and sign off for production.

 Production - This environment will be the production environment, which will be used by live users

for live transactions. Also, production support will use it verify productions issues and apply fixes

for them.

http://www.csc.com/

Page 29 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

13.2 Software

The following table outlines the software requirements for the NY-HX program in the test environment:

Desktop/Laptop

Requirement

Desktop/Laptop Requirement Detail

Operating System Windows 7

Applications MS SharePoint

 Rational Requirements Composer

 Rational Team Concert

 Rational Quality Manager

 MS Office (Word, Excel, Visio, PowerPoint)

 IE 8.0 or 9.0

 Shared Drive mapping

 Lotus Notes

 SOAP UI

 DB2/LUW database access

 DB Visualizer tool to query database

 Active Risk Manager

 Oracle BPA

 Magnolia

 Activity Workflow

 iLog Business Rules Engine

 FileNet

Figure 12: Test Environment Software Requirements

13.3 Hardware

The following table outlines the minimum Laptop/Desktop hardware specifications required

operating the NY-HX program in the test environment:

Laptop/Desktop Requirement Minimum Laptop/Desktop Requirement Detail

Processor Intel i5 Core processor

Memory 4 GB

Hard Drive 40 GB

Network Interface Card (NIC) 100 MBPS

Monitor 17” LCD with 1084x720 resolution and 16 M colors

Figure 13: Test Environment Hardware Requirements

http://www.csc.com/

Page 30 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

13.4 Other Resource Requirements
Datasets connection strings for each environment will be pre-determined and loaded and fresh ‘n’

clean data schema is created before each test phase begins. Data backup and refresh procedures will

be executed according to individual test plans.

13.5 Testing Tools
To assist in Functional, System-Integration Testing and User Acceptance testing; developers will

follow standard coding techniques and tools in creating unit and string test cases. Developers and

Test Engineers will also utilize appropriate tools where applicable.

The Test Strategy best practice is to utilize automated testing tools where appropriate. The

following tools are available for testing.

 JUnit for unit and string testing

 Rational Quality Manager for functional, system, SIT and Release Integration testing and defect

management

 Rational Functional Tester for automated regression testing

 Rational Requirement composer for maintaining and uploading requirements

 Rational Team Concert for configuration managements (code and builds and defect tracking)

 I-Log as business rules engine

 Content management server for static and dynamic contents

 Soap UI for (middle layer) web services testing

 MS SharePoint for all deliverables documents; common collaboration site

 DB2/LUW for (data layer) database testing

14 DETAILED TEST STRATEGY

14.1 Purpose
The purpose of this detail test strategy is to document the standards that will be used for analyzing,

planning, executing, verifying, and managing the Functional, System-Integration, User Acceptance

and Initial Deployment (Pilot) testing.

14.2 Overview
The test strategy is divided into five phases: Analysis, Planning, Execution and Verification, and

Management. Each of the phases is further divided into description, tasks, and work products.

While each task documented in this appendix should be completed, the work products are

"suggestions". If documents already exist with the relevant information, the existing documents can

be substituted for the work products. However, the information on the existing or created

documents must be complete.

14.3 Analysis

14.3.1 Description of Analysis Phase

Initial exploration will be conducted to determine what requirements gap analysis has been

completed to-date and what documentation exists. If additional information/clarifications are

needed, all the teams will try to get the clarifications and collect the necessary information. Next,

identify and document the scope of the specific testing activities. This scope should be reviewed

with the project team prior to starting the planning activity to make sure the analysis information is

current and accurate. This exercise should provide final approved product inventory which includes

all the user stories.

http://www.csc.com/

Page 31 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

14.3.2 Analysis Tasks

Identify and document the business requirements and/or IT functions/rules that will be verified

during the test execution. This information may exist. If not, then JAD sessions, business

requirements documents, technical design documents and design/architecture documents will

typically be a good place to get started.

 Determine scope of testing effort. The scope should be identified, documented, approved and

agreed upon by the Project team.

 Estimate the time and duration needed to complete the testing effort during the sprints.

Compare this estimate to the estimate that exists in the Testing Project Plan. Work with the

Testing Lead to clearly understand the work effort for the specific test.

14.3.3 Analysis Input Work Products

 Defined Functional Decompositions (User Stories and tasks breakdown)

 Updated Business Requirement Documentation (BRD)

 Updated Technical Design Documentation (TDD) {includes application architecture}

 Overall product inventory according to defined scope

 Scope for testing effort

14.4 Planning

14.4.1 Description of Planning Phase

There are three major activities in the planning process: creating the sprint test plans, preparing

environment, and identifying, preparing and gathering test data. All three of these activities must be

successful for the planning effort to be successful. If any of the three activities are incomplete or

incorrect, the test execution will take much longer and will be more difficult to complete.

14.4.2 Planning Tasks

14.4.2.1 Create Sprint Test Plan

Creating the sprint test plan involves translating the business requirements/user stories that were

identified during the "analysis" phase into a list of task breakdown and test cases that can be

designed, developed, executed and verified. The test plan will identify specific test cases/scenarios

that will be executed during associated cycles.

 Identify test scenarios/cases based on the selected product inventory (user stories/requirements)

and business area tracks that were identified in the gap analysis phase. The test scenarios/cases

should typically represent a unit of work performed by end user.

 Identify and define acceptance criteria for each user story and scenarios, so that effective test

cases can be written, executed and verified.

 Generate the test plan. The test plan will include each test case that will be executed during the

specific sprint cycle.

 The test plan will need to be reviewed and approved by the product owner and business users.

 Test cases can be prioritized to ensure the critical ones are tested first, if suggested by product

owner/business users. Mostly test cases would be prioritized according to prioritization of user

story.

http://www.csc.com/

Page 32 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

14.4.2.2 Create Test Environment

Preparing the environment involves the acquisition and building of the hardware and software

components that make up the system to test or validate it completely. Special care must be taken to

ensure the test environments are properly established.

 Identify hardware and software that is needed to build a proper test environment. The technical

support team, information system support team, network support team and/or the production

support team should build, set and provide the environment.

 Set up the hardware, software, and application components that supports the software. The

technical support team, information system support team, network support team and/or the

production support team will need to complete the setup.

 Ensure that a mechanism is in place to control versions and backup of software and its

movement to different test environments. Failure to control versions and backup can result in

delays and rework with the ‘correct’ version.

 Execute a preliminary test to ensure all hardware, software, and application components have

been set up properly and fully functional.

14.4.2.3 Prepare Test Data

Preparing test data includes the identification and set up of data that will be required to support

different cycles of testing. Data may be created manually, extracted, copied or generated. Careful

thought must be given in data preparation. Test data preparation, validation and verification of data

should be supported or generated/created/populated/extracted by database analysts, technical

designers or developers and should be supplied to testing team well before test execution. If data is

not properly set up, the testing will not integrate properly between processes.

 Identify the source of the data that will be used for testing. Determine if the data will be created,

extracted, copied, or generated.

 Identify the volume of data that will be used for testing. The volume of test data must be good

enough to be executed quickly, yet comprehensive enough to represent production data.

 Create data manually as required. Data may be created using various tools (i.e., online portion

of the application, editing tools, queries, etc.).

 Extract data as needed. Data may be extracted using various tools (i.e., extraction program,

utility program, purges program, etc.).

 Generate data as needed. Data may be generated with one of the various data generation tools

on the market.

 Execute a preliminary test to ensure the data has been properly established.

14.4.3 Planning Work Products

 Test Plan

 Test Scenarios/Cases

 Test Environment

 Test Data

http://www.csc.com/

Page 33 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

14.5 Execution and Verification

14.5.1 Description of Execution Phase

Execution and Verification are kind of corresponding activities. The execution process is where the

planning activities are integrated into a single process. The test cases that were documented will be

executed in the test environment using the data that was set up. For test cases, screen prints would

be generated. If required, for the test cases, the results will need to be printed or saved to tape as

proof that execution of the test sets was completed and passed.

14.5.2 Description of Verification Phase

Verification is simultaneously done while executing each test step/case. The results of the test

execution will need to be reviewed to determine if the test was successful. If the test was successful,

the results will be saved as "proof" and the test plan will be updated to indicate the test was

successful. If the test was not successful, an issue will be generated that describes the problem and

the test plan will be updated to indicate the test was not successful.

14.5.3 Execution Tasks

 Execute application test cases using the test environment. Testing team will execute each test

case documented on the test plan and whenever required, scrum team members can also help in

completion of test execution. When possible, utilize job-scheduling tools to reduce the potential

for error and increase efficiency.

 Generate and label test case results according to sprint cycle and release wise.

 For the test cases, screen prints should be generated for all screens with input data and the

screens that contain confirmation messages. If a test case can be "proved" by browsing

information, the browse screen print should be generated as well.

 Print any summary reports, file prints, file compares, queries, etc. that provides the information

as the test cases were successfully completed and passed. Typically, "before" and "after"

documents should be created to prove changes to data. Each of the documents should be clearly

labeled with the system test date and test case number.

 Neatly package the results of the test and turn the test plan along with the test results, over to the

Scrum Master and Product Owner that will be verifying and approving the tests.

 Report defects as they occur during test execution. The defects will be reviewed and fixed as

appropriate. Testing must be repeated until successful for all the issues reported. If the

application team cannot resolve any issue, it should be elevated to the Scrum Master or Project

Manager.

 Update test plan to indicate which test cases were executed successfully and which test cases

were not successful. Provide a copy of the updated test plan to the Testing Lead.

14.5.4 Verification Tasks

 Compare results that were generated during the test execution with the acceptance criteria that

was defined by business users.

 Document and resolve issues as they are identified during the execution and verification

process. Anytime actual and expected results do not match, an issue must be generated. The

scrum team will need to know when issues are identified. If the scrum team cannot resolve the

issue, it should be elevated to the Scrum Master or Project Manager.

http://www.csc.com/

Page 34 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

 Issues/defects must be prioritized and assigned to relative team member to fix and resolve them.

The Scrum Master will work with the development and design team to prioritize and assign

issues to corresponding team members for resolution.

 Update the test plan to indicate which test cases were successful (expected results match with

the actual results) and which test cases were not successful. Provide a copy of the updated test

plan to the Scrum Master and Product Owner.

 After the verification is complete, organize and package the test plan and test results. The

original test documentation will be provided to the Scrum Master and Product Owner. The

scrum team may retain a copy if they so desire.

14.5.5 Execution and Verification Work Products

 Revised Test Plan

 Test Results (test summary report, screen prints, reports, file prints, file compares, queries, etc.)

 Issue/Defects Report

14.5.6 Entry and Exit Criteria

14.5.6.1 Entry Criteria

Testing of application is planned in multiple iterations. The entry criterion is specified below:

 Updated Unit and String test cases and unit/string Test Results (test summary report, screen

prints, reports, file prints, file compares, queries, etc.).

 Unit testing Issues/Defects report and all unit testing issues/defects are closed.

 Stable test environment (web servers, application servers and database servers and instances) is

ready prior to testing.

 Test case document is ready and covers all the functionalities for the particular Sprint.

 User Access rights and ID’s have been created in the test environment

 Appropriate access rights are set up in the Defect Management tool for testers/managers.

 Code delivery to QA for each sprint is accompanied by documentation indicating areas of

functionality present in the application. Checklist is also expected to provide:

o SQL queries used to retrieve data, if any.

o Detailing of the Services to be tested and the basic infrastructure for the same.

o Data formats expected for the inputs in the edit fields.

 Application has undergone sufficient Unit Testing to verify stability of the build.

 Smoke/Sanity testing is successful

 All Severity 1 and 2 defects from previous cycle are fixed, delivered, tested and closed

14.5.6.2 Exit Criteria

The exit criteria for product release will be when the product has met the expected functionality

defined in the test requirements of this release. The following conditions should be met:

 All Severity 1 and 2 defects from previous cycle are fixed, delivered and tested.

 All defects are either closed or deferred and test cases related to deferred defects should be

mapped to defect ids and remains failed

 Product Owner should agree to sign off on all open defects as tolerable for product launch.

 A test plan with execution report should be published after release and should be reviewed by

concerned stakeholders

 All test cases addressing to critical and high scenarios should be passed

http://www.csc.com/

Page 35 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

14.6 Manage

14.6.1 Description of Management Phase

The analysis, planning, and execution and verification phases occur one after another. The

management phase is an ongoing phase that will start with the analysis phase and will continue after

the verification phase for every sprint and release.

The scrum teams will report milestones and status to the Scrum Master, Development Manager and

Testing Manager. The Scrum Master, Development Manager and Testing Manager will consolidate

the information and will report milestones and status report to Sr. Management, PMO and Client.

14.6.2 Management Tasks

 Identify and acquire the required resources to effectively analyze, plan, execute and verify the

tasks.

 Report milestones and status to the Project Manager.

 Track and manage issues that relate to the application team.

 Assist with the risk management documentation.

 Support the testers with analysis, planning, execution, and verification efforts.

 Obtain Signoffs for completed tests.

 Package documentation at the completion of each test.

14.6.3 Management Work Products

 Release Plan

 Issues/Defects Report (If necessary)

 Status Reports

 Testing deliverable Signoffs (if process is defined, it will be delivered)

14.6.4 Test Suites/Cases Management

Test Case Management will be done at Test Plan, Test Suite, Test Case, Test Script level according

to the workflow of RQM tool. There will be different types of test cases, which will be managed in

Test plans and Test Suites. Testing will be behind development at least one sprint. So, during each

sprint test cases will be written and executed according to selected user stories during sprint

planning.

 Test Plan will be created at Release level for each track

 Test Suite will be created at Sprint level and Test Suites will be under Test Plan

 Functional Test Cases/Scripts will be created at Sprint level and test cases/scripts will be under

test suite

 SIT Test Cases/Scripts will be maintained in SIT test suite under Test Plan for each release

 Regression Test cases will be maintained in Regression test suite under Test Plan for each

release

Below diagram shows the folder structure which will be managed and maintained during testing:

http://www.csc.com/

Page 36 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Figure 14: Test Plan Release

TEST PLAN -RELEASE LEVEL

Create Test Suite
Sprint-1

Create
Test Scripts

Create / Execute Test Suite
Sprint-3

Create / Execute

Test Cases

Create / Execute

Test Scripts

Create / Execute Test Suite

Sprint-4

Create / Execute

Test Cases

Create / Execute

Test Scripts

Create / Execute Test Suite
Sprint-6 Create / Execute

Test Cases

Create / Execute

Test Scripts

Create / Execute Test Suite
Sprint-7 Create / Execute

Test Cases

Create / Execute

Test Scripts

Create / Execute Test Suite
Sprint-8

Create / Execute

Test Cases

Create / Execute

Test Scripts

Create / Execute Test Suite
Sprint-5 Create / Execute

Test Cases

Create / Execute

Test Scripts

Create / Execute Test Suite
Sprint-2 Create / Execute

Test Cases Create / Execute
Test Scripts

Execute Test Suite Sprint-9
Execute

Test Cases

Execute

Test Scripts

 Execute Test Suite Sprint-

10

 Execute
Test Cases

Execute

Test Scripts

Create Test
Cases

SIT

 SIT

SIT

SIT

SIT

Test Suite

Test cases

 Manual Automation

SIT

SIT

Regression

Suite

http://www.csc.com/

Page 37 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

14.6.5 Test Work Flow

Figure 15: Test Work Flow

Generate
 Test Report

Log/reopen
Defect

Analyzing the
Result

Defect Fixed
by Dev Team

Build ready
for Retest

Can be
Automated?

Close
Defect

Fail Pass

No

Identify Regression
Test Cases / Scripts

Create Regression
Manual Testing Suite

Manual Test Case
/ Script Creation

Test Plan
Creation
(in RQM)

Associate to
Test Suite

Test Suite
Creation

Test Case
Creation

Test Case / Script
Review

Test Case / Script
Approval

Test Case / Suite
Execution Record

Test Case / Script
Execution

Add Regression Manual
Test Cases / Scripts

Analyzing the
Result

Log/reopen
Defect

Execute Regression
Manual Scripts

Fail Pass

Defect Fixed
by Dev
Team

Build ready
for Retest

Create
Automation Test

Suite

Analyzing the
Result

Log/reopen
Defect

Yes

Create
Automation

Scripts

Execute
Automation

Scripts

Fail Pass

Defect Fixed
by Dev
Team

Build ready
for Retest

Defect fixed in Retest

http://www.csc.com/

Page 38 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

15 APPENDIX A – COLLABORATION OF SDLC RATIONAL TOOLS

Figure 16: Rational Tools Collaboration

http://www.csc.com/

Page 39 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

16 APPENDIX B – BUSINESS AND TECHNOLOGY REFERENCE MODEL

Figure 17: Technology Reference Model

http://www.csc.com/

Page 40 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

17 APPENDIX C – DETAILED TESTING PROCESS STEPS

17.1 Review Master Test Plan

Actors: Project Manager, Test Manager, QA Manager, Development Manager, PMO, and

Business Architect

 Create: Identify Approach, Resources, Tools (defect/issue management, testing) and

Procedures

 Review: Schedule Meeting, Obtain feedback

 Finalize: Apply revisions

 Acceptance Signoff: Review and signoff

17.2 Create Test Plan

Actors: Scrum Master, Testing team, Business Users, Development team, Performance team,

Configuration Manager, Technical Architect, DBA

 Create: Design Requirements, Business and Technical Inputs, Test Plan Repository, Test

Cases/Scripts (Identify or Create)

 Review: Schedule Meeting, Obtain feedback

 Finalize: Apply Revisions

 Acceptance Signoff: Review and obtain signoff

17.3 Setup Test Environment

Actors: Information technology system support team, Network Support team, Development team,

Technical Architect, Tech designers, Performance Manager, Configuration Manager, Project

Manager, DBA, Test Manager, and Scrum Master

 Define: Identify Tools, Infrastructure Requirements, Data Requirements (All environments)

 Create: Install tools, extract/load data, initial backup

 Configure: Setup environment preferences

 Validate readiness: Execute mock test case

 Readiness Signoff: Review and signoff

17.4 Execute Tests

Actors: Scrum Team consists of Test Engineers, Sr. Test Engineers/Lead, Performance Test

Engineers, Business Users, Developers, Development Lead, Tech Designers, and DBA

 Initial Environment: Backup or refresh data

 Configure: Checkout test plans, test cases/scripts

 Test: Execute steps, capture results, capture test plan changes

 Finalize: Log test results, check-in documented results

http://www.csc.com/

Page 41 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

17.5 Review Test Results

Actors: Product Owner, Business Users, Scrum Master, Project Manager, Test Manager, Test

Lead, Development Manager, Development Lead, Scrum Team, Quality Assurance Manager and

PMO

 Prep Work: Prepare for review, determine additional participants, individual review of daily

testing results

 Schedule Meeting: Schedule time and place for daily meetings

 Review: Validate results, review issues, log issues, assess change requests to test plans,

assess and prioritize change requests due to defects

 Finalize: Log results for status reporting

17.6 Acceptance Signoff:

Actors: Product Owner, Business Users, Scrum Master, Project Manager, Quality Assurance

Manager

 Prep Work: Prepare for final review of test results and issue resolution, individual review of

test phase results

 Schedule: Schedule time and place for meeting

 Review: Review final test status report or identify rework

 Finalize: Document acceptance or rework until acceptance is achieved

http://www.csc.com/

Page 42 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

18 APPENDIX D – DOCUMENT MANAGEMENT

18.1 Warehousing of Program Elements

All development elements will follow standard configuration management procedures as

documented in the NY-HX Configuration Management Plan. This includes code, on-line screens,

technical components and objects, wireframes, business rules and data where appropriate. A folder

structure will be created within the version control system for capturing these items for proper

archival, backup, approval and signoffs.

For detailed configuration management, please refer 9.4.5 NY-HX Configuration Management

Plan.

18.2 Warehousing of Program Documentation

All agreed upon work products will be properly checked in (checked out) of version control system

or SharePoint for change control purposes. This includes the Functional Design, Technical Design,

Test Plans and Test Cases, and Technical and Environmental Setups. A folder structure will be

created within SharePoint for capturing these items for proper archival, backup, approval and sign

offs.

For all the CMS deliverable documents, please visit the SharePoint link:

https://workspace.nyhx.emedny.org/pm/design/Forms/AllItems.aspx

http://www.csc.com/

Master Test Plan

September 18, 2012

19 APPENDIX E – SAMPLES FROM AGILE TEST PLANS

Figure 18: Agile Test Plan Template

http://www.csc.com/

Page 44 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Figure 19: PM Agile Sprint 6 Test (sample 1)

http://www.csc.com/

Page 45 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Figure 20: PM Agile Sprint 6 Test (sample 2)

http://www.csc.com/

Page 46 New York State Health Insurance Exchange (NY-HX Program)

 9.3.2 Test Plan

Figure 21: PM Agile Sprint 6 (test against IE)

http://www.csc.com/

